Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
BMC Pregnancy Childbirth ; 24(1): 269, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609869

RESUMO

BACKGROUND: Empathy is a critical component of nursing care, impacting both nurses' and patients' outcomes. However, perceived empathy from spouses during pregnancy and its impact on health-related quality of life (HRQoL) are unclear. This study aimed to examine pregnant women's perceived empathy from their spouses and assess the relation of perceived empathy on HRQoL. METHODS: This cross-sectional study, performed in the obstetric clinics or wards of four well-known hospitals in Anhui Province, China, included 349 pregnant women in the second or third trimester; participants were recruited by convenience sampling and enrolled from October to December 2021. A general information questionnaire, the Interpersonal Reactivity Index (IRI), a purpose-designed empathy questionnaire and the Medical Outcomes Study 12-item Short-Form Health Survey (SF-12) were used to evaluate the pregnant women's general information, perceptions of empathy and HRQoL. Data were analysed using SPSS 22 at a threshold of P < 0.05. Descriptive analysis, Pearson correlation analysis, Student's t test, ANOVA, and multiple regression analysis were used for analysis. RESULTS: The pregnant women's total empathy, physical component summary (PCS) and mental component summary (MCS) scores were 41.6 ± 9.0, 41.6 ± 7.6, and 47.7 ± 9.1, respectively. Correlation analysis revealed that the purpose-designed empathy questionnaire items were significantly positively correlated with perspective taking and empathic concern but were not correlated with the personal distress dimension and were only partially correlated with the fantasy dimension. Maternal physical condition during pregnancy, planned pregnancy, and occupational stress were predictors of the PCS score (ß = 0.281, P < 0.01; ß = 0.132, P = 0.02; ß = -0.128, P = 0.02). The behavioural empathy item of our purpose-designed empathy questionnaire and empathic concern were important predictors of the MCS score (ß = 0.127, P = 0.02; ß = 0.158, P < 0.01), as well as other demographic and obstetric information, explaining 22.0% of the variance in MCS scores totally (F = 12.228, P < 0.01). CONCLUSIONS: Pregnant women perceived lower empathy from their spouses and reported lower HRQoL. Perceived empathy, particularly behavioural empathy, may significantly impact pregnant women's MCS scores but has no effect on their PCS scores. Strategies that foster perceived empathy from spouses among pregnant women are essential for facilitating healthy pregnancies and potentially improving maternal and child health.


Assuntos
Empatia , Cônjuges , Gravidez , Criança , Humanos , Feminino , Estudos Transversais , Gestantes , Qualidade de Vida , China
2.
Cancer Cell Int ; 24(1): 13, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184573

RESUMO

Gastric cancer remains a leading cause of cancer-related death worldwide, largely due to inadequate screening methods, late diagnosis, and limited treatment options. Liquid biopsy has emerged as a promising non-invasive approach for cancer screening and prognosis by detecting circulating tumor components like circulating tumor DNA (ctDNA) in the blood. Numerous gastric cancer-specific ctDNA biomarkers have now been identified. CtDNA analysis provides insight into genetic and epigenetic alterations in tumors, holding promise for predicting treatment response and prognosis in gastric cancer patients. This review summarizes current research on ctDNA biology and detection technologies, while highlighting clinical applications of ctDNA for gastric cancer diagnosis, prognosis, and guiding treatment decisions. Current challenges and future perspectives for ctDNA analysis are also discussed.

4.
Hepatol Int ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982952

RESUMO

BACKGROUND: Aberrant iron metabolism is commonly observed in multiple tumor types, including hepatocellular carcinoma (HCC). However, as the key regulator of iron metabolism involved in iron absorption, the role of transferrin receptor (TFRC) in HCC remains elusive. METHODS: The mRNA and protein expression of TFRC were evaluated in paired HCC and adjacent non-tumor specimens. The correlation between TFRC level and clinicopathological features or prognostic significance was also analyzed. The role of TFRC on biological functions was finally studied in vitro and in vivo. RESULTS: The TFRC level was remarkably upregulated in HCC tissues compared to paired peritumor tissues. Overexpressed TFRC positively correlated with serum alpha-fetoprotein, carcinoembryonic antigen, and poor tumor differentiation. Multivariate analysis demonstrated that upregulated TFRC was an independent predictive marker for poorer overall survival and disease-free survival in HCC patients. Loss of TFRC markedly impaired cell proliferation and migration in vitro and notably suppressed HCC growth and metastasis in vivo, while overexpression of TFRC performed an opposite effect. Mechanistically, the mTOR signaling pathway was downregulated with TFRC knockdown, and the mTOR agonist MHY1485 completely reversed the biological inhibition in HCC cells caused by TFRC knockdown. Furthermore, exogenous ferric citrate (FAC) or iron chelator reversed the changed biological functions and signaling pathway expression of HCC cells caused by TFRC knockdown or overexpression, respectively. CONCLUSIONS: Our study indicates that TFRC exerts an oncogenic role in HCC and may become a promising therapeutic target to restrain HCC progression.

5.
J Dig Dis ; 24(6-7): 399-407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37596850

RESUMO

OBJECTIVES: As a critical component of the autophagic machinery, autophagy-related gene 5 (ATG5) is essential for autophagosome formation. Autophagy participates in the transformation and progression of various malignant tumors, but the role of ATG5 in hepatocellular carcinoma (HCC) remains to be illustrated. In this study we aimed to investigate the prognostic significance of ATG5 in HCC. METHODS: ATG5 expression was evaluated in 89 pairs of HCC tissues and adjacent non-tumor tissues. The relationship between ATG5 expression and patients' clinicopathological characteristics and prognosis were evaluated. Moreover, subgroup analyses were performed regarding patients' age and number of tumors. Nomograms estimating overall survival (OS) and disease-free survival (DFS) were conducted. RESULTS: ATG5 expression was increased in HCC specimens rather than adjacent non-tumor tissues. The upregulated ATG5 expression was positively associated with serum α-fetoprotein (AFP) level. Moreover, cases with a strong ATG5 expression had a poorer disease-free survival (DFS) and overall survival (OS) than those with a weak ATG5 expression. Multivariate analysis showed that a strong expression of ATG5 was related to a poor OS and DFS in patients with HCC. Further analysis indicated that cases with a higher ATG5 expression had a poorer OS and DFS in the young patients (≤55 years) and those with solitary tumor. The nomogram suggested that there was a coherence between nomogram prediction and the actual situation of patient survival related to ATG5. CONCLUSION: ATG5 promotes tumor progression in HCC, making it a potential biomarker in the diagnosis and a therapeutic target of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Autofagia/genética , Biomarcadores Tumorais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Nomogramas , Prognóstico
6.
Adv Healthc Mater ; 12(27): e2301133, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37311013

RESUMO

Ferroptosis is identified as a novel type of cell death with distinct properties involved in physical conditions and various diseases, including cancers. It is considered that ferroptosis provides a promising therapeutic strategy for optimizing oncotherapy. Although erastin is an effective ferroptosis trigger, the potential of its clinical application is largely restricted by its poor water solubility and concomitant limitations. To address this issue, an innovative nanoplatform (PE@PTGA) that integrated protoporphyrin IX (PpIX) and erastin coated with amphiphilic polymers (PTGA) to evoke ferroptosis and apoptosis is constructed and exemplified using an orthotopic hepatocellular carcinoma (HCC) xenograft mouse model as a paradigm. The self-assembled nanoparticles can enter HCC cells and release PpIX and erastin. With light stimulation, PpIX exerts hyperthermia and reactive oxygen species to inhibit the proliferation of HCC cells. Besides, the accumulated reactive oxygen species (ROS) can further promote erastin-induced ferroptosis in HCC cells. In vitro and in vivo studies reveal that PE@PTGA synergistically inhibits tumor development by stimulating both ferroptosis- and apoptosis-related pathways. Moreover, PE@PTGA has low toxicity and satisfactory biocompatibility, suggesting its promising clinical benefit in cancer treatments.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Pró-Fármacos , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral
7.
Cancer Res ; 83(4): 521-537, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36723974

RESUMO

Lipid metabolism reprogramming is a recognized hallmark of cancer cells. Identification of the underlying regulators of metabolic reprogramming in esophageal squamous cell carcinoma (ESCC) could uncover potential therapeutic targets to improve treatment. Here, we demonstrated that pre-mRNA processing factor 19 (PRP19) mediates reprogramming of lipid metabolism in ESCC. Expression of PRP19 was significantly upregulated in multiple ESCC cohorts and was correlated with poor clinical prognosis. PRP19 promoted ESCC proliferation in vitro and in vivo. Upregulation of PRP19 enhanced fatty acid synthesis through sterol regulatory element-binding protein 1 (SREBF1), a major transcription factor of lipid synthase. Moreover, PRP19 enhanced the stability of SREBF1 mRNA in an N6-methyladenosine-dependent manner. Overall, this study shows that PRP19-mediated fatty acid metabolism is crucial for ESCC progression. Targeting PRP19 is a potential therapeutic approach to reverse metabolic reprogramming in patients with ESCC. SIGNIFICANCE: Upregulation of pre-mRNA processing factor 19 (PRP19) contributes to esophageal squamous cell carcinoma progression by reprogramming SREBF1-dependent fatty acid metabolism, identifying PRP19 as a potential prognostic biomarker and therapeutic target.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Ácidos Graxos , Regulação Neoplásica da Expressão Gênica , Metabolismo dos Lipídeos/genética , Prognóstico , Precursores de RNA/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
8.
J Transl Med ; 20(1): 579, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494846

RESUMO

Primary liver cancer (PLC) is a common gastrointestinal malignancy worldwide. While hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are two major pathologic types of PLC, combined HCC and ICC (cHCC-ICC) is a relatively rare subtype that shares both hepatocyte and cholangiocyte differentiation. However, the molecular feature of this unique tumor remains elusive because of its low incidence and lack of a suitable animal model. Herein, we generated a novel spontaneous cHCC-ICC model using a Sleeping Beauty-dependent transposon plasmid co-expressing oncogenic Myc and AKT1 and a CRISPR-Cas9 plasmid expressing single-guide RNA targeting p53 into mouse hepatocytes via in situ electroporation. The histological and transcriptional analysis confirmed that this model exhibits cHCC-ICC features and activates pathways committing cHCC-ICC formation, such as TGF-ß, WNT, and NF-κB. Using this model, we further screened and identified LAMB1, a protein involved in cell adhesion and migration, as a potential therapeutic target for cHCC-ICC. In conclusion, our work presents a novel genetic cHCC-ICC model and provides new insights into cHCC-ICC.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Modelos Animais de Doenças , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Estudos Retrospectivos
9.
Nanomaterials (Basel) ; 12(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144982

RESUMO

Hepatocellular carcinoma (HCC) accounts for the predominant form of liver malignancy and presents a leading cause of cancer-related death globally. Sorafenib (SOR), a first-line targeted drug for advanced HCC treatment, has a battery of untoward side effects. Photothermal therapy (PTT) has been utilized as an effective adjuvant in synergy with other approaches. However, little is known about the tumoricidal efficacy of combining SOR with PTT for HCC. Herein, a novel versatile nanoparticle, Cu2-xSe@SOR@PEG (CSP), that is based on a photothermal Cu2-xSe core and SOR for simultaneously reinforcing PTT and reducing the adverse effects of SOR was constructed. The synthesized CSP exhibited a remarkably enhanced therapeutic effect upon 808 nm laser irradiation via dampening HCC cell propagation and metastasis and propelling cell apoptosis. The intravenous administration of CSP substantially suppressed tumor growth in a xenograft tumor mouse model. It was noted that the CSP manifested low toxicity and excellent biocompatibility. Together, this work indicates a promising and versatile tool that is based on synergistic PTT and molecular-targeted therapy for HCC management.

10.
Front Pharmacol ; 13: 952482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071851

RESUMO

Sorafenib resistance is often developed and impedes the benefits of clinical therapy in hepatocellular carcinoma (HCC) patients. However, the relationship between sorafenib resistance and tumor immune environment and adjuvant drugs for sorafenib-resistant HCC are not systemically identified. This study first analyzed the expression profiles of sorafenib-resistant HCC cells to explore immune cell infiltration levels and differentially expressed immune-related genes (DEIRGs). The prognostic value of DEIRGs was analyzed using Cox regression and Kaplan-Meier analysis based on The Cancer Genome Atlas. The primary immune cells infiltrated in sorafenib-resistant HCC mice were explored using flow cytometry (FCM). Finally, small-molecule drugs for sorafenib-resistant HCC treatment were screened and validated by experiments. The CIBERSORT algorithm and mice model showed that macrophages and neutrophils are highly infiltrated, while CD8+ T cells are downregulated in sorafenib-resistant HCC. Totally, 34 DEIRGs were obtained from sorafenib-resistant and control groups, which were highly enriched in immune-associated biological processes and pathways. NR6A1, CXCL5, C3, and TGFB1 were further identified as prognostic markers for HCC patients. Finally, nalidixic acid was identified as a promising antagonist for sorafenib-resistant HCC treatment. Collectively, our study reveals the tumor immune microenvironment changes and explores a promising adjuvant drug to overcome sorafenib resistance in HCC.

11.
Lab Invest ; 102(11): 1280-1291, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35918602

RESUMO

GPM6A is a glycoprotein in endothelial cells, and its biological function in the development of hepatocellular carcinoma (HCC) is unknown. Through Affymetrix gene expression microarray and bioinformatic analysis, very low GPM6A expression was found in HCC tissue. The present study aims to explore the function and regulatory mechanism of GPM6A in HCC development and progression. Levels of GPM6A expression in HCC specimens from different disorders and various hepatoma cell lines were determined, and its role on cell proliferation was evaluated in hepatoma cells stably overexpressing GPM6A. Modulation of a specific microRNA (miRNA) on its expression and function was evaluated with miRNA mimetic transfection. Herein, it is reported that much lower GPM6A levels were found in HCC tissues than pericancerous liver tissues and correlated to a poor prognosis. GPM6A overexpression inhibited cell proliferation, suppressed colony formation, migration and invasion in two hepatoma cell types. Available evidence does not support that genetic and epigenetic dysregulation contributes significantly to GPM6A inactivation in HCC. Additional findings demonstrated that miR-96-5p acted directly on the 3'-UTR of the GPM6A gene and significantly decreased its mRNA and protein levels. MiR-96-5p transfection promoted proliferation, migration and invasion of SMMC-7721 and MHCC-97H hepatoma cells; whereas the function of oncogenic microRNA-96 was significantly inhibited in GPM6A-overexpressed hepatoma cells. In conclusion, GPM6A expression in HCC is commonly suppressed regardless its base disease types, and its low expression in HCC tissues is most likely attributed to upregulated miR-96-5p. GPM6A may function as a valuable biomarker for HCC progression and prognosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Células Endoteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , MicroRNAs/metabolismo , Proliferação de Células/genética , Regiões 3' não Traduzidas , RNA Mensageiro , Biomarcadores , Movimento Celular/genética , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo
12.
ACS Appl Mater Interfaces ; 14(33): 37356-37368, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35951459

RESUMO

Although sorafenib, a multi-kinase inhibitor, has provided noteworthy benefits in patients with hepatocellular carcinoma (HCC), the inevitable side effects, narrow therapeutic window, and low bioavailability seriously affect its clinical application. To be clinically distinctive, innovative drugs must meet the needs of reaching tumor tissues and cause limited side effects to normal organs and tissues. Recently, photodynamic therapy, utilizing a combination of a photosensitizer and light irradiation, was selectively accumulated at the tumor site and taken up effectively via inducing apoptosis or necrosis of cancer cells. In this study, a nano-chemo-phototherapy drug was fabricated to compose an iridium-based photosensitizer combined with sorafenib (IPS) via a self-assembly process. Compared to the free iridium photosensitizer or sorafenib, the IPS exhibited significantly improved therapeutic efficacy against tumor cells because of the increased cellular uptake and the subsequent simultaneous release of sorafenib and generation of reactive oxygen species production upon 532 nm laser irradiation. To evaluate the effect of synergistic treatment, cytotoxicity detection, live/dead staining, cell proliferative and apoptotic assay, and Western blot were performed. The IPS exhibited sufficient biocompatibility by hemolysis and serum biochemical tests. Also, the results suggested that IPS significantly inhibited HCC cell proliferation and promoted cell apoptosis. More importantly, marked anti-tumor growth effects via inhibiting cell proliferation and promoting tumor cell death were observed in an orthotopic xenograft HCC model. Therefore, our newly proposed nanotheranostic agent for combined chemotherapeutic and photodynamic therapy notably improves the therapeutic effect of sorafenib and has the potential to be a new alternative option for HCC treatment.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanocompostos , Fotoquimioterapia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Irídio/farmacologia , Neoplasias Hepáticas/patologia , Nanocompostos/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Sorafenibe/uso terapêutico
13.
J Oncol ; 2022: 1971559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342408

RESUMO

microRNAs (miRNAs) and miRNA-mediated regulatory networks are promising candidates in the prevention and treatment of cancer, but the role of specific miRNAs involved in hepatocellular carcinoma (HCC) remains to be elusive. Herein, we found that miR-106b-5p is upregulated in both HCC patients' tumor tissues and HCC cell lines. The miR-106b-5p expression level was positively correlated with α-fetoprotein (AFP), hepatitis B surface antigen (HBsAg), and tumor size. Overexpression of miR-106b-5p promoted cell proliferation, migration, cell cycle G1/S transition, and tumor growth, while decreased miR-106b-5p expression had opposite effects. Mechanistic studies showed that B-cell translocation gene 3 (BTG3), a known antiproliferative protein, was a direct target of miR-106b-5p, whose expression level is inversely correlated with miR-106b-5p expression. Moreover, miR-106b-5p positively regulates cell proliferation in a BTG3-dependent manner, resulting in upregulation of Bcl-xL, cyclin E1, and CDK2, as well as downregulation of p27. More importantly, we also demonstrated that miR-106b-5p enhances the resistance to sorafenib treatment in a BTG3-dependent manner. The in vivo findings showed that mice treated with a miR-106b-5p sponge presented a smaller tumor burden than controls, while the mice injected cells treated with miR-106b-5p had more considerable tumor burden than controls. Altogether, these data suggest that miR-106b-5p promotes cell proliferation and cell cycle and increases HCC cells' resistance to sorafenib through the BTG3/Bcl-xL/p27 signaling pathway.

14.
J Transl Med ; 19(1): 347, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389031

RESUMO

BACKGROUND: Tumor-associated macrophages (TAM) are immunosuppressive cells that contribute to impaired anti-cancer immunity. Iron plays a critical role in regulating macrophage function. However, it is still elusive whether it can drive the functional polarization of macrophages in the context of cancer and how tumor cells affect the iron-handing properties of TAM. In this study, using hepatocellular carcinoma (HCC) as a study model, we aimed to explore the effect and mechanism of reduced ferrous iron in TAM. METHODS: TAM from HCC patients and mouse HCC tissues were collected to analyze the level of ferrous iron. Quantitative real-time PCR was used to assess M1 or M2 signature genes of macrophages treated with iron chelators. A co-culture system was established to explore the iron competition between macrophages and HCC cells. Flow cytometry analysis was performed to determine the holo-transferrin uptake of macrophages. HCC samples from The Cancer Genome Atlas (TCGA) were enrolled to evaluate the prognostic value of transferrin receptor (TFRC) and its relevance to tumor-infiltrating M2 macrophages. RESULTS: We revealed that ferrous iron in M2-like TAM is lower than that in M1-like TAM. In vitro analysis showed that loss of iron-induced immunosuppressive M2 polarization of mouse macrophages. Further experiments showed that TFRC, the primary receptor for transferrin-mediated iron uptake, was overexpressed on HCC cells but not TAM. Mechanistically, HCC cells competed with macrophages for iron to upregulate the expression of M2-related genes via induction of HIF-1α, thus contributing to M2-like TAM polarization. We further clarified the oncogenic role of TFRC in HCC patients by TCGA. TFRC is significantly increased in varieties of malignancies, including HCC, and HCC patients with high TFRC levels have considerably shortened overall survival. Also, TFRC is shown to be positively related to tumor-infiltrating M2 macrophages. CONCLUSIONS: Collectively, we identified iron starvation through TFRC-mediated iron competition drives functional immunosuppressive polarization of TAM, providing new insight into the interconnection between iron metabolism and tumor immunity.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Linhagem Celular Tumoral , Humanos , Ferro , Camundongos , Macrófagos Associados a Tumor
15.
ACS Appl Mater Interfaces ; 13(25): 29416-29423, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34148345

RESUMO

DNA self-assembled nanostructures have been considered as effective vehicles for biomolecule delivery because of their excellent biocompatibility, cellular permeability, noncytotoxicity, and small size. Here, we report an efficient antiviral strategy with self-assembled tetrahedral framework nucleic acids (tFNAs) delivering small interfering RNA (t-siRNA) to silence classical swine fever virus (CSFV) gene in porcine host cells. In this study, two previously reported siRNAs, C3 and C6, specifically targeting the CSFV genome were selected and modified on tFNAs, respectively, and termed t-C3 and t-C6. Results indicate that t-C3 and t-C6 can inhibit the viral proliferation of CSFV in kidney derived porcine cells, PK-15, effectively and that inhibition was markedly stronger than free siRNA-C3 or siRNA-C6 only. In addition, the DNA nanostructure also has high cargo-carrying capacity, allowing to deliver multiple functional groups. To improve the antiviral ability of tFNAs, a dual-targeting DNA nanostructure t-C3-C6 was constructed and used to silence the CSFV gene in porcine host cells. This study found that t-C3-C6 can inhibit the viral release and replication, exhibiting outstanding anti-CSFV capabilities. Therefore, these dual-targeting tFNAs have great potential in virus therapy. This strategy not only provides a novel method to inhibit CSFV replication in porcine cells but also verifies that tFNAs are effective tools for delivery of antiviral elements, which have great application potential.


Assuntos
Antivirais , Vírus da Febre Suína Clássica/efeitos dos fármacos , Portadores de Fármacos , Nanoestruturas/química , RNA Interferente Pequeno , Animais , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Linhagem Celular , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Suínos , Replicação Viral/efeitos dos fármacos
16.
Adv Healthc Mater ; 9(21): e2000650, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33000919

RESUMO

Sorafenib (SOR), a multi-kinase inhibitor for advanced hepatocellular carcinoma (HCC), reveals a limited therapeutic effect due to a lack of selectivity and evident drug resistance. In the present study, bismuth-based mesoporous nanomaterial (NBOF) is loaded with SOR and then coated with polyethylene glycol and folic acid conjugates (P-FA) to form an NBOF@SOR-P-FA nanocarrier system. The system achieves significantly enhanced anti-cancer efficacy by combining chemotherapy with radiotherapy. To evaluate the effect of synergistic treatment, cytotoxicity detection, Live/Dead staining, apoptotic assay, and Western blot analysis are performed. The results suggest that NBOF@SOR-P-FA significantly inhibits HCC cell proliferation and promotes cell apoptosis. Also, the NBOF@SOR-P-FA exhibits excellent biocompatibility by hemolysis and serum biochemical tests and produces a substantially enhanced contrast efficiency as compared to iohexol by computed tomography imaging. More importantly, the profound suppression of tumor growth and potentiation of apoptosis are observed in a mouse subcutaneous tumor model. Collectively, these results indicate that the bismuth-based nanotheranostic platform could enhance the therapeutic effect of sorafenib and serve as an innovative method for HCC treatment.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Bismuto/farmacologia , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Quimiorradioterapia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Niacinamida , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico
17.
Oncogene ; 39(35): 5768-5781, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32719439

RESUMO

Cumulative evidence suggests that microRNAs (miRNAs) promote gene expression in cancers. However, the pathophysiologic relevance of miRNA-mediated RNA activation in hepatocellular carcinoma (HCC) remains to be established. Our previous miRNA expression profiling in seven-paired HCC specimens revealed miR-93-5p as an HCC-related miRNA. In this study, miR-93-5p expression was assessed in HCC tissues and cell lines by quantitative real-time PCR and fluorescence in situ hybridization. The correlation of miR-93-5p expression with survival and clinicopathological features of HCC was determined by statistical analysis. The function and potential mechanism of miR-93-5p in HCC were further investigated by a series of gain- or loss-of-function experiments in vitro and in vivo. We identified that miR-93-5p, overexpressed in HCC specimens and cell lines, leads to poor outcomes in HCC cases and promotes proliferation, migration, and invasion in HCC cell lines. Mechanistically, rather than decreasing target mRNA levels as expected, miR-93-5p binds to the 3'-untranslated region (UTR) of mitogen-activated protein kinase kinase kinase 2 (MAP3K2) to directly upregulate its expression and downstream p38 and c-Jun N-terminal kinase (JNK) pathway, thereby leading to cell cycle progression in HCC. Notably, we also demonstrated that c-Jun, a downstream effector of the JNK pathway, enhances miR-93-5p transcription by targeting its promoter region. Besides, downregulation of miR-93-5p significantly retarded tumor growth, while overexpression of miR-93-5p accelerated tumor growth in the HCC xenograft mouse model. Altogether, we revealed a miR-93-5p/MAP3K2/c-Jun positive feedback loop to promote HCC progression in vivo and in vitro, representing an RNA-activating role of miR-93-5p in HCC development.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , MAP Quinase Quinase Quinase 2/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Regiões 3' não Traduzidas , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Hep G2 , Xenoenxertos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MAP Quinase Quinase Quinase 2/biossíntese , MAP Quinase Quinase Quinase 2/genética , Masculino , Camundongos , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Fosforilação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-jun/genética , Transfecção , Regulação para Cima
18.
ACS Appl Mater Interfaces ; 12(15): 17193-17206, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32207914

RESUMO

Sorafenib, a multitargeted kinase inhibitor, has been reported to elicit a limited therapeutic effect in hepatocellular carcinoma (HCC). Currently, phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is emerging as a powerful modality for cancer therapy. However, few studies have been reported the effectiveness of the combination of sorafenib with PDT and PTT in HCC. Herein, we designed and synthesized bovine serum albumin (BSA)-coated zinc phthalocyanine (ZnPc) and sorafenib (SFB) nanoparticle (ZnPc/SFB@BSA). The obtained ZnPc/SFB@BSA was able to trigger PDT, PTT, and chemotherapy. After irradiation by a 730 nm light, ZnPc/SFB@BSA significantly suppressed HCC cell proliferation and metastasis while promoted cell apoptosis in vitro. Furthermore, intravenous injection of ZnPc/SFB@BSA led to dramatically reduced tumor growth in an orthotopic xenograft HCC model. More importantly, ZnPc/SFB@BSA presented low toxicity and adequate blood compatibility. Therefore, a combination of ZnPc with sorafenib via BSA-assembled nanoparticle can markedly suppress HCC growth, representing a promising strategy for HCC patients.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/terapia , Indóis/química , Neoplasias Hepáticas/terapia , Nanocápsulas/química , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/uso terapêutico , Sorafenibe/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Indóis/metabolismo , Indóis/uso terapêutico , Isoindóis , Luz , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Camundongos , Camundongos Nus , Compostos Organometálicos/metabolismo , Compostos Organometálicos/uso terapêutico , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fototerapia , Espécies Reativas de Oxigênio , Soroalbumina Bovina/química , Sorafenibe/metabolismo , Sorafenibe/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Compostos de Zinco
19.
Ann Surg Oncol ; 27(5): 1546-1557, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32157528

RESUMO

BACKGROUND: The mechanistic target of rapamycin (mTOR) pathway, containing mTOR complex 1 (mTORC1) and mTORC2, is dysregulated in multiple cancers, including hepatocellular carcinoma (HCC). Mammalian lethal with sec-13 protein 8 (mLST8) is a shared constituent of both mTORC1 and mTORC2, yet little is known regarding its role in HCC development. METHODS: mLST8 expression was detected in a total of 186 pairs of HCC and adjacent non-tumor specimens. The correlation between mLST8 level and clinicopathological features or prognostic significance were analyzed. The role of mLST8 on biological functions was also preliminarily studied. RESULTS: The study revealed that the mLST8 level was dramatically higher in HCC specimens than in adjacent non-tumor specimens. mLST8 overexpression positively correlated with tumor size, differentiation, and vessel invasion. Cases with elevated mLST8 level had more unfavorable overall survival (OS) and disease-free survival (DFS) than those with downregulated mLST8 level. Multivariate analysis demonstrated that mLST8 upregulation was an independent predictive marker for OS and DFS. Calibration curves from nomogram models indicated an excellent coherence between nomogram prediction and actual situation. Decision curve analysis proved that mLST8-based nomograms presented much higher predictive accuracy when compared with conventional clinical staging systems. Mechanistically, mLST8 enhanced cell proliferation and invasion through the AKT (protein kinase B) pathway. CONCLUSIONS: Our study demonstrates that mLST8 exerts an oncogenic role in HCC and may become a promising prognostic biomarker and therapeutic target for HCC patients.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Homólogo LST8 da Proteína Associada a mTOR/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Nomogramas , Prognóstico , Regulação para Cima , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...